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A sound speed profile which increases monotonically with depth below the ocean
surface is upward-refractive, acting as a duct in which sound may be transmitted to
long ranges with little attenuation. A well-known example is the mixed layer, in
which the temperature is uniform and the sound speed approximately scales with the
hydrostatic pressure, increasing linearly with depth. The depth of the mixed layer
depends on surface conditions, but is of the order of 100 m. Deeper channels are
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514 M. J. Buckingham

found in ice-covered polar waters, where the temperature and sound speed profiles
both show a minimum at the surface. A typical surface duct in the Arctic Ocean may
extend to depths of 1000 m or more and is capable of supporting very-low-frequency
(vLr) (1-50 Hz) acoustic transmissions with no bottom interactions. On a depth scale
that is smaller by several orders of magnitude, wave-breaking events create a bubbly
layer one or two metres thick below the sea surface, with the highest concentration
of bubbles, and correspondingly the lowest sound speed, at the surface. The bubble
layer acts as a waveguide for sound in the audio frequency range, above 2 kHz,
although transmission may be severely attenuated due to absorption and scattering
by the bubbles, as well as by the irregular geometry of the sea surface and the bubble
clouds.

Most ocean-surface waveguides can be accurately represented by an inverse-
square sound speed profile, which may be monotonic increasing (upward refracting)
or decreasing (downward refracting) with depth, and whose detailed shape is
governed by just three parameters. An analysis of the sound field below the sea
surface in the presence of such a profile shows that it consists of a near-field
component, given by a branch-line integral, plus a sum of uncoupled normal modes
representing the trapped radiation which propagates to longer ranges. The modal
contribution is identically zero in the case of the downward refracting profiles. The
properties of the modes emerge from a straightforward theoretical development
involving first- and second-order asymptotics : each mode shows an oscillatory region
immediately below the surface, terminating at the extinction depth, below which the
mode decays exponentially to zero; the extinction depth increases rapidly with both
mode number and the reciprocal of the acoustic frequency ; a reciprocal relationship
exists between the extinction depth and the mode strength ; and there is no mode cut-
off, nor are there any evanescent modes.

On applying the inverse-square theory to vLF Arctic Ocean transmissions, the
spectral density of the modal field is found to show a steep positive gradient between
5 and 50 Hz, the rising level occurring as more modes make a significant contribution
to the field. This result is compared with observations of infra-sonic ambient noise
that have been made in the marginal ice zone of the Greenland Sea, using surface
suspended, flow-shielded hydrophones. The measured spectra show a deep minimum
at about 5 Hz, in accord with the theoretical prediction.

The inverse-square theory also has application to under-ice ocean-acoustic
tomography, where the dispersive nature of the upward refractive channel governs
the arrival times of the modes at the receivers. A simple expression for the group
velocity of the modes gives the arrival times. More generally, the full modal structure
of the field across the tomography array may be constructed from the theory.

Acoustic signatures of wave-breaking events have recently been observed in the
ocean-surface bubble layer by Farmer & Vagle (1989). The spectra show well-defined
peaks (La Perouse) or a broader-band structure (rFAsINEX), both of which are fully
explained, in terms of intermode interference, by the inverse-square theory. The
differences between the two data-sets are attributed to the different sound speed
profiles in the bubble layers at the two sites. The spectral banding in FASINEX is a
modulation phenomenon, showing a strong dependence on the source depth. A
straightforward inverse calculation indicates that the bubble sources in FASINEX are
located at a depth of 1.5 m, corresponding roughly to the base of the bubble layer.
This is a slightly unexpected conclusion, since acoustically active bubbles generated
by spilling breakers under wind-free conditions in a laboratory tank are known to be

Phil. Trans. R. Soc. Lond. A (1991)
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located within a few millimetres of the surface. However, aeration is much more
pronounced at the wind-driven surface of the ocean than in a tank, which may be a
factor in accounting for the deeper sources. There are practical difficulties in
measuring the source distribution using conventional techniques, but the inverse-
square transmission theory in conjunction with near-surface measurements of wave-
breaking signatures provides an effective means of making such a determination.

1. Introduction

When the sound speed in the ocean increases monotonically with depth, the medium
is upward refracting and acts as a subsurface waveguide along which sound may
propagate to long distances with little attenuation. An example of such a duct may
be found under the ice cover in the Arctic Ocean (Urick 1983), where the surface
waters are maintained near freezing (—2 °C), the temperature increases with depth,
and the sound speed profile shows a minimum at the surface. In this environment the
‘surface’ channel, that is the region where the sound speed shows a positive gradient,
may extend throughout the water column to a depth of several thousand metres, and
is capable of supporting very-low-frequency (vLr) (1-50 Hz) sound transmission,
with negligible bottom interaction, to ranges of hundreds of kilometres.

A similar sound speed profile, but with substantially smaller length scale, occurs
within ten metres or so of the surface of the open ocean, in the presence of breaking
waves. Thorpe (1982, 1984a) observed that air entrained by waves diffuses
downwards by the action of turbulence, to form a subsurface layer of bubble clouds.
The volume fraction of air in this bubbly layer decays with depth (Thorpe 1984b),
as a result of which the sound speed increases with depth, thus providing the upward
refracting condition necessary for acoustic ducting to occur. The surface sound
channel formed through wave-breaking is capable of supporting acoustic frequencies
in the audio band from two to several tens of kilohertz; but long-range propagation
in this case may be limited by scattering and absorption of sound by the entrained
bubbles, and by the irregular structure of the bubble layer.

Acoustic techniques have immense potential for investigating and monitoring sea-
surface processes such as ice fracturing in the Arctic, or gas exchange across the
air-sea interface through wave-breaking on the open ocean. In such applications of
acoustics the propagation conditions in the surface sound channel will almost
certainly influence the observations, implying that a simple interpretation based on
straight-line propagation is likely to be misleading. Although this would appear to
be a drawback of acoustics, in point of fact the opposite is true: the complicated
structure imposed on the signal by the anisotropic medium represents information.
Strategies designed to extract this information rely heavily on an ability to predict
with precision the effects of the transmission path on the received signal.

Several numerical, acoustic-propagation-loss algorithms are available (Harrison
1989), representing one means of investigating acoustic fields in the ocean. A
preferable approach, at least in principle, is an analytical treatment of the problem,
analogous to Pekeris’s (1948) classic analysis of the acoustic field in a two-layered
liquid half-space in which the sound speed and density are discontinuous at the
interface. But theories of radiation fields in smoothly varying, non-uniform (sound
speed or refractive index) profiles usually involve a mathematical development that
rapidly becomes intractable.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. The (normalized) (a) upward refracting and (b) downward refracting inverse-square
profiles. Only the portions below the sea surface (solid curves) are relevant to the ocean-acoustic
propagation problem.

However, certain profiles are amenable to some degree of analysis, including, for
example, the bilinear refractive index profile that was first investigated by Furry
(1951), in connection with the transmission of radio waves in atmospheric ducts, and
which was subsequently applied to ocean-acoustic propagation by Labianca (1973).
In a similar vein, Pederson & Gordon (1965, 1970) implemented normal mode theory
in an analysis of sound propagation in surface ducts. By using a somewhat different
approach, but applied to the same type of environment, Weston (1986) established
the effect of source depth on acoustic intensity in a surface channel. The acoustic
properties of deeper channels have also been investigated analytically, notably by
Uberall & Nicholas (1968), who had some success in predicting range focusing effects
in a parabolic profile.

In the present work, the so-called inverse-square profile (Felsen & Marcuvitz 1973)
is examined in a theoretical treatment of sound transmission in a surface sound
channel. The sound speed, ¢(z), in the inverse-square ocean, as a function of the depth
coordinate, z, is given by the expression

1/e*(z) = (1/¢%) {1 +21/2%, (1)

where the parameter ¢ is the value of ¢(z) in the limit as z— co. For the profile to
have a positive gradient the second parameter, z,, in equation (1) must be real; if z,
is imaginary, the gradient is negative and the profile is downward refracting, in
which case normal mode propagation is not supported.

Figure 1 shows the upward and downward refracting forms of the inverse-square
profile. In figure 1a (2, real) the sound speed is seen to be zero when z = 0, a condition
which is not normally encountered at the sea surface. This minor difficulty is avoided
by positioning the surface below the origin of z at

z=2,=0, (2)

thus allowing the sound speed at the surface to be finite. The depth coordinate, z,, of
the surface is the third and final parameter required to characterize completely the
inverse-square profile.

When z, is imaginary, the sound speed given in equation (1) diverges to infinity at
a depth equal to the magnitude of z;, and is imaginary at shallower depths. In this
case, to assure a physically realizable profile, the sea surface must satisfy the

Phil. Trans. R. Soc. Lond. A (1991)
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On acoustic transmission tn ocean-surface waveguides 517

condition z > |z,|. Below the surface the profile is then real with a negative gradient
(figure 1b). Although not of immediate interest, this downward refracting version of
the inverse-square profile has been included here since it is automatically
accommodated by the field analysis to follow.

Two special cases of the inverse-square profile are the isospeed (i.e. non-refracting)
profile (z, = 0), which will be useful later as a check on some of the mathematical
developments, and the linear (i.e. constant gradient) profile (Pekeris 1946). The latter
is obtained from (1) by setting z, oc ¢, and letting ¢, — 00, and is distinct from a
profile in which the square of the refractive index is either linear in z, a problem
discussed by Jones (1986) and Li et al. (1990), or of a quadratic form (Jeng & Liu
1987).

In general, the inverse-square profile shows some curvature and with a judicious
choice of parameters is accurately representative of various surface sound channels,
including those in the Arctic Ocean and the surface bubble layer. We shall see later
that in the upward refracting profile, z, is a measure of the ‘effective’ depth of the
surface channel, in the sense of being, along with frequency, the factor controlling the
number of significant modes supported by the profile.

The problem of determining the sound field from a point source in an inverse-
square ocean is tractable. A complete, exact solution is developed in §2 and §3,
taking the form of a sum of uncoupled, orthogonal normal modes plus a (near-field)
branch line integral. (A full description of the field solely in terms of normal modes
is impossible.) Although the modes (i.e. depth eigenfunctions) are given by a rather
obscure special function (Macdonald’s function of imaginary order, as in the kernel
of the Kontorovich-Lebedev transform), which is slow to compute, it possesses an
integral representation that lends itself to evaluation by asymptotic techniques. This
results in an expression for the modes involving only elementary functions and an
Airy function, thus providing a solution for the field which is easy to interpret
physically, is quick to evaluate, and is essentially exact since in all cases of practical
interest the asymptotic approximations are remarkably accurate. (In the case of the
downward refracting profile the modes are all identically zero and the field is given
by the branch line integral alone.)

The physical properties of the inverse-square modes, discussed in §4, turn out to
be rather different from those of modes in a conventional waveguide. Each mode, for
example, shows an oscillatory region immediately beneath the surface, terminating
at the extinction depth, below which the mode becomes evanescent, decaying
exponentially to zero; the extinction depth increases exponentially with mode
number and with the reciprocal of the acoustic frequency ; and, although each mode
contains an evanescent region, there is no mode cut-off and there are no evanescent
modes. All but one or two of the modes show the same distribution of zeros (nodes),
which allows multimode suppression to be achieved by careful selection of the source
and/or receiver depths.

To illustrate the nature of the modal propagation, the theory is applied in §5 to the
problem of long-range acoustic transmission in the Arctic Ocean. The effects of
multimode suppression are discussed in connection with VLF propagation, and the
point spectrum is shown to rise rapidly between 5 and 50 Hz, by two to three orders
of magnitude. This is associated with a reduction in the number of significant modes
which occurs as the frequency falls, and is consistent with a deep minimum regularly
observed around 5 Hz in Arctic Ocean ambient noise spectra. Dispersion and modal
travel times are also considered in §5, in connection with an ocean-acoustic

Phil. Trans. R. Soc. Lond. A (1991) 20-2
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518 M. J. Buckingham

tomography experiment that has recently been conducted under partial ice cover in
the Greenland Sea.

A detailed comparison is made in §6 between the inverse-square theory and the
results of an elegant experiment conducted in the ocean by Farmer & Vagle (1989).
With a hydrophone close to the surface, in the vicinity of the surface bubble layer,
they recorded the sounds of individual wave-breaking events at two different sites,
identified as La Perouse and rAsINEX. In both cases the near-surface (first 10 m)
sound speed profiles were also measured and shown to be upward refracting, due to
entrained bubbles, with the surface channel at FASINEX being notably deeper than
that at La Perouse.

The spectrum of each wave-breaking event from La Perouse shows well-defined
peaks in the measurement band 3-20 kHz, whilst the FASINEX data are qualitatively
different, showing broad spectral bands, separated by fairly well-defined nulls. By
fitting the inverse-square profile to each of the measured profiles, the spectral
features in the two data-sets are reproduced accurately and in detail by the theory,
confirming that the spectral phenomena are indeed an effect of the propagation
conditions in the bubble layer. Moreover, the banding observed in the FASINEX
spectra is interpreted as a modulation phenomenon, which is controlled by the depth
of the source.

From the spectral width of the measured modulation peaks, the inverse-square
theory provides an estimate of the depth of the acoustic sources associated with
wave-breaking, that is to say, the depth of the acoustically active bubbles. According
to the theory, the sources in FASINEX were 1.5 m below the surface, a position which
coincides approximately with the base of the bubble clouds. Most of the constituents
of the bubble layer are expected to be quiescent, since bubbles are effective acoustic
radiators only during the first few milliseconds of their existence (Medwin & Beaky
1989). At present it is not clear why the noisy bubbles, constituting a small fraction
of the total population, should lie at or close to the base of the bubble layer. This
remains an open question, but one that needs to be resolved if reliable estimates of
gas fluxes across the air—sea interface are to be achieved from acoustic observations
of wave breaking.

2. Theory: propagation in an inverse-square profile

Consider a point, impulsive source of strength ¢ located at depth 2z’ (measured
from the origin of z) in a semi-infinite ocean with an inverse-square profile. The (time-
dependent) velocity potential of the field, g(¢), satisfies both the inhomogeneous wave
equation and the pressure-release boundary condition at the surface z = z,. The
Fourier transform of g(f) with respect to time is the (complex) harmonic velocity
potential, G(jw) where j = 4/ —1 and w is angular frequency. The harmonic velocity
potential satisfies the Fourier transformed (with respect to time) wave equation, that
is to say, the Helmholtz equation:

VEG +[0®/c*(2)] G = —Qd(r—71'), (3)

where V?is the laplacian, 8(+) is the Dirac delta function, and r, ¥’ are the coordinates
of the receiver and source, respectively. With ¢(z) representing the inverse-square
sound-speed profile, as defined in (1), the (unique) solution of (3) is sought that
satisfies the pressure-release boundary condition at the surface:

G=0 at z=xz, 4)
Phil. Trans. R. Soc. Lond. A (1991)
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A cylindrical coordinate system with the z-axis vertical and passing through the
source point is the appropriate choice for a horizontally isotropic medium of uniform
depth (which is our case). In view of the azimuthal uniformity of the field, the
Helmholtz equation in this coordinate system takes the two-dimensional form
19 3G\ G o Q
——lr—|+=—+5—-0G=——0(r)d(z—7), 5
ror (T ar) 0% c*(z) r (r)dz==) ®)
where z, 2’ are, respectively, the receiver and source depths measured from the origin,
and 7 is the horizontal range from the source to the receiver. The first step in the
solution for G is to apply to (5) a zero-order Hankel transform with respect to range.
This transform is defined as

G, = Jw rGdy(pr)dr (6a)

0

and the inverse transform is
q= f PG, Jy(pr) dr, (6b)
0

where J,(pr) is the zero order Bessel function of the first kind. The transform variable
p in these expressions is in effect the horizontal wavenumber. The Hankel
transformation of the second derivative with respect to range in (5) is (Papoulis 1968)

® (19 o0&
L r{;5<ra—r)}=]0(pr) dr = —p*G,,. (7)

It follows that the Hankel transformation over range reduces the Helmholtz
equation to an ordinary differential equation in z:

0’4, w? . o Q ,
e +{02(z)—p }Gp = %8(7, Z). (8)
By making a familiar change of field variable, to U,(z), defined through
Gy(2) = 2U,(2), 9)
the differential equation in (8) takes the form
1o oU,\ U, w? 0 @ ,
zaz(z 0z ) 4z2+{c2(z) PUp = 2nz%6(z “)- (19)

This reduces to an inhomogeneous form of Bessel’s equation when c(z) is replaced by
the expression for the inverse-square profile in (1):

KYRAN PSP

z@z(z % )+{77 e U,= 2nz%8(z Z'), (11)

where 7 =/ (k% —p?), (12)
= G—k%z), (13)

and k,=w/c,. (14)

For a lossless medium k,, is real and #,u are either real or imaginary (but not
complex). In particular, u is real for a (lossless) downward refracting medium,

Phil. Trans. R. Soc. Lond. A (1991)
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520 M. J. Buckingham
whereas in the upward refracting case, for ‘high’ frequencies such that k2, > 1, 4 is
imaginary.

Bessel’s (inhomogeneous) equation can be solved quite naturally using the familiar
properties of Hankel transforms. Since the z-domain in the ocean extends from a
finite value (z = z,) at the surface, rather than zero, it is necessary to use a finite
Hankel transform, as discussed by Sneddon (1945, 1946), the appropriate form being

00

U, s= f 2U,(2) J, (sz) dz, (15)
where .J (sz) is a Bessel function of the first kind of order 4. The corresponding inverse
transform is

U,= L sU, o (s2) ds. (16)
(Finite Hankel transforms have recently been used by Buckingham (1988) in the
analysis of a field problem with spherical symmetry.) When the transform of order
p in (15) is applied to the differential operator on the left of (12), the result is

0 2
L z{ iaaz (z%)—%} J(s2)dz = —82U, +2 Up(zg) S (s25) — 25 (s25) Up(zs),  (17)
where the primes denote differentiation with respect to z. Thus, the boundary
conditions (field and field-gradient) at the surface are included explicitly in this
formalism through the last two terms on the right of (17). Since the surface is a
pressure-release boundary, the field term, U,(z), is identically zero, and hence the
second term on the right of (17) vanishes, whereas the field gradient, U (z,), in the
final term is an unknown quantity to be determined shortly.

On applying the Hankel transform in (15) to the differential equation (11), an
algebraic equation is obtained whose solution is

Up,s = [(Q/2m) 23, (52) — 2, (s2) Up(2,)1/ (s —7%). (18)

The inverse transform of U, ,, according to (16), is

D&
_Qz2 s (s2') d Ul ? 8, (s7) J,(s7) d (19)
P oom 82—77 (s* —77

and, as the integrals here are known forms (Watson 1958), the solution can be written
explicitly :

U, = Jg[% L (n2) H () =2, Up(z) J, wz)fﬂ“wz)] 2<7, (20)

where H"() is a Hankel function of the first kind of order . (When z > 2’ the result
is as in (20) except that z and 2’ are interchanged in the first product of Bessel and
Hankel functions on the right.)

To determine the unknown factor Uy (z,), representing the gradient of U, at the
surface, (20) is differentiated with respect to z and the result evaluated at z = z,.
Some simple algebra then leads to the expression

Q2 HV (n2))
2z, HO(52,)

Up(zs) = (21)

Phil. Trans. R. Soc. Lond. A (1991)
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On acoustic transmission tn ocean-surface waveguides 521
where we have used the wronskian (Arfken 1966)
Sz HP' (n2) — T, (nz) HP (nz,) = 2j/mz,. (22)

From (20), (21) and (9), the solution for the Hankel-transformed harmonic velocity
potential, &, is

G, =2U,
L N HP () ") 0
= IJQ\/(ZZ )H(l)(nz ) J,u(ﬂz) Hy (nzs)_‘]y(ﬂzs) H,u (772)] (23)
2 S

This result holds for z < 2/, i.e. when the receiver is shallower than the source; when
z > 2/, the same result holds but with z and 2’ interchanged. The final step in
obtaining the formal solution for the harmonic velocity potential G is to take the
inverse transform of G, as defined by (6b), which yields

. [ HO(pe
6 =40V ) [ i D () O 1) — 2 0) HE 021 (7).
0 Y4 S
for z2<2' (24a)
and

00

. , H(l) 4 , /
6 =50V &) | b L LD ) )~ HP 02 HE )] ) 0,
0 # S

for z>2" (24b)

where the Bessel functions of order g have been replaced by a sum of Hankel
functions of the first and second kind.

The expressions in (24) represent a complete, exact solution for the harmonic
velocity potential from a point source in a semi-infinite ocean with an inverse-square
sound speed profile. Clearly, the solution satisfies the pressure-release boundary
condition at the surface, for when z equals z, (i.e. the receiver is on the surface) the
integrand in (24a) is identically zero; and it also satisfies reciprocity since ¢ is
invariant under an exchange of source/receiver coordinates.

As a check on the formulation in (24), consider the case of an isovelocity profile
(2, = 0). According to (13), the parameter u, which appears as the order of the Hankel
functions in the integrands of (24), is then equal to 3. In general, Bessel functions of
half-odd-integer order can be represented exactly by elementary functions, the
appropriate forms in the present case being as follows (Lebedev 1965):

H{" () = —j[2/nafexp (jo); H{® (@) = j[2/naexp (—jo). (25)

With these expressions, (24a) and (24b) both reduce to the same integral, which is
a known form (Erdélyi 1954):

o exp{inlz—2|}—exp{jn(z+2 —2z,)}
G = %JQJ pXpLinz=Zl 77p ¢ D g (r) dp
0
= (Q/4nR,)exp (jky, Ry) = (Q/41R,) exp (jk,, R,), (26)
where R, = /[(z—72)%+7%], Ry,=[(z+7 —22,)*+7?% (27)
are, respectively, the distances from the receiver to the source and to the negative
image of the source formed by the pressure-release surface. Equation (26), which is
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clearly correct, is the Lloyd’s mirror solution for the field from a point source in a
semi-infinite, isospeed medium with a pressure-release boundary.

Although (24) provide a general solution for the field, the integrals are awkward
to evaluate either by approximate analytical techniques or, because of the particular
special functions in each integrand, by numerical integration schemes. A further
criticism that might be levelled at the formalism is that it provides little insight into
the physical properties, particularly the modal structure, of the sound field in the
inverse-square profile. Fortunately, it is possible to express the solution in an
alternative form that is easier to interpret and evaluate. A procedure for making the
conversion, which relies on arguments involving the deformation of the path of
integration in the complex p-plane, is described in the following section.

3. Discrete and continuous components of the field

In the present discussion it is necessary to consider only one of the expressions in
(24), since the same argument applies to both but with z and 2" interchanged. Taking
the case where 2’ > z > z,, the first step is to represent the Bessel function in the
integrand as the sum of two zero-order Hankel functions, allowing the field to be
expressed as the sum of two integrals, /; and I,:

G =15 Qv (22") i, +1,}, (28)
where 1= [ s, ) dp, (294)

0
I, = f pS,(n) HP (pr) dp, (290)

0

and
S () = B () HO (nz) HO HO () H® f /
/4(77) - H(l)(ﬂz )[ 122 (ﬂz) V3 (’”zs)_ 122 (77'2) Y22 (”ZS)]’ or >z (30)
" S

The procedure for manipulating I, and I, in the complex p-plane is only briefly
described below, with the details relegated to Appendix A.

Since the radical %, defined in (12), has branch points at p = +k, it is implicit that
two branch cuts must be made in the p-plane. These cut lines are chosen in such a
way that Im () > 0 over the top Riemann sheet, to ensure that S,(y) converges to
finite values everywhere on the sheet. By making appropriate substitutions, the pair
of integrals in (29) are combined into a single-line integral on the sheet, and the
integration path is then deformed to follow the cut lines.

In deforming the path of integration, the (simple) poles of S (5), corresponding to
the zeros of the Hankel function in the denominator of (30), are enclosed by the
contour. It follows that the final form of the field solution consists of two
components: a branch line integral (continuous field), which decays relatively
rapidly with range, and an infinite sum of normal modes (discrete field),
corresponding to the residues of the poles enclosed by the integration contour.

From Appendix A the final version of the general solution for the field in the

inverse-square profile is
G = Gbl+Gnm’ (31@)

where Gy = 3@ V() f 1S, 00) HO(/ (2, — 7))y (310)

Phil. Trans. R. Soc. Lond. A (1991)
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is the branch line integral and

HP (1 25) HP (N 2) HiP (1 2)
AHP (nz5)/0n,—,

is the sum of normal modes. The roots of the characteristic equation

H®(pz) =0 (32)

give the eigenvalues #,, for modes m =1,2,3,.... The properties of the Hankel
functions, H(7,,2), representing the modes, the roots of (32), and the behaviour of
the mode sum are examined below in §4.

There are no approximations in the analysis leading to (31), which, like the original
formulation in (26), constitute an exact solution for the field. But the new
expressions provide a better physical picture of the field through the explicit
appearance of the normal modes. Moreover, the zeros of the Hankel function in (32),
which are required to specify the eigenvalues, can be accurately determined using
asymptotic techniques.

There are two situations in which the modal sum, @ ., vanishes and the field
consists solely of the branch line integral, ¢,: the first is when u is real, which
includes the isospeed profile (i.e. z, = 0) and all downward-refracting inverse-square
profiles (i.e. z, imaginary); and the second is when z, = 0, a condition implying an
upward-refracting inverse-square profile (i.e. z, real), with the sound speed at the sea
surface equal to zero. Under the first condition, in which the order g is real, the
Hankel function in (32) has no zeros (Watson 1958), hence there are no poles in the
complex p-plane, which in turn means there are no residues and thus no normal
modes. The second case, in which z, = 0, is something of a curiosity. From the
identity (Abramowitz & Stegun 1965)

)
tim A 2s) _ 4 (33)

m )
250 H,l(}) (”zs)

it follows that there are no poles in S, (7), and thus no normal modes. Physically, the
absence of modes occurs, even though the profile is upward refracting, because the
phase velocity falls to zero on the surface, making it effectively anechoic: sound
propagating towards the surface eventually slows to a halt, its kinetic energy having
been converted to potential energy, leaving the medium, in the absence of internal
losses, permanently strained. Thus, there is no prospect of a reflected wave
propagating away from the surface into the region of finite sound speed. Since the
existence of modes requires multiple reflections from the boundary, the modal
contribution is identically zero. A fuller account of the branch line integral and the
properties of the field when 2z, = 0 is given by Buckingham (1990a). The discussion
hereafter addresses only the modal component of the field, which in most situations
of interest is dominant.

G = —11Q /() 3 Im HP(/ (R —9%)r) (31c)

4. The modal field

As we have seen, and assuming now that z, > 0, normal modes exist in the inverse-
square profile when g is imaginary, or equivalently when k,z, >3} When this
condition holds it is convenient to work with the real variable

v=ju=+/(kL23—1)>0. (34)
With this definition, (32) must be solved for the eigenvalues.
Phil. Trans. R. Soc. Lond. A (1991)
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The zeros of Hankel functions have often featured in radiation problems, dating
back to the early work of Watson (1918, 1919) on diffraction of electromagnetic
waves by the earth. They are also important in quantum mechanical scattering
problems (Regge 1959) showing spherical or cylindrical symmetry. These and other
applications have stimulated a number of investigations of the zeros, notably by
Magnus & Kotin (1960), with refinements and extensions added by Keller et al. (1963)
and Cochran (1965).

The analyses show that the only roots of the Hankel function of the first kind of
imaginary order are themselves imaginary. Thus, to specify the modes and, in
particular, to find the roots of the characteristic equation it is necessary to establish
the properties of the special function HY) (jo), where o and v are real and positive.
It turns out, as shown below, that the function H%),(jo) (or equivalently, Macdonald’s
function K (o)) has a relatively simple asymptotic representation, from which all the
characteristics of the modes are readily deduced. The properties of the Hankel
function of the second kind, H®),(jo), which also appears in the mode sum, as part

of the mode coefficient, are also developed below.

4.1. The Hankel function HY),(jo)

A straightforward argument is given in Appendix B which leads to the integral

representation
U,(o) = jemHY) (jo)

= %J exp {jy[u—o/vsinh (u)]} du, (35)
where the normalization ensures that the amplitude of the (real) function U (o) is not
excessively small when v > 1. Figure 2a and b shows the ‘exact’ form of the
normalized function for v = 10 and v = 2, respectively, computed using a Simpson’s
rule algorithm to evaluate the integral. It is noteworthy that, as the scaling of the
o axis is logarithmic, the constant period and amplitude in the oscillatory region,
where o < v, indicates that U, (o) shows a cos(In (o)) dependence. As o increases
through v, the function shows a slight rise in amplitude and then becomes
evanescent, decaying exponentially to zero. The extinction point, where the
oscillatory behaviour ceases and the function begins its exponential decay, is defined
by equality of the magnitudes of the order and argument, i.e. by o = v. (‘ Extinction’
rather than ‘cut-off’ is used for the termination of the oscillatory region, since the
latter term has other connotations in connection with waveguide propagation.
Specifically, mode cut-off occurs when the horizontal wavenumber switches from real
to imaginary, a transition which does not occur in the inverse-square profile.)

The integral in (35) is slow to compute and cannot be solved easily for the
eigenvalues. Both difficulties are eliminated by turning to asymptotics (Appendix B).
For v > o (oscillatory region), a standard application of first-order stationary phase
theory yields the expression

Ulo) =~ —%W\!i—?g)%cos{vln [5—1/(71)2—12)]—\/(1)2—02)—%}, (36a)
(notice the cosine of the logarithm); and a second-order analysis gives

U0) % —2(2/0) Ai[(2/0)s (e —)], (36b)
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

///\ \\
A

/\
'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

On acoustic transmission in ocean-surface waveguides 525
P10 ) B 05 S R T
YN | -
-1t ] - o ,
10° 100 10t 10°  10' 10t 107 100 10t 100 107 g
olv olv olv olv

Figure 2. The normalized function U (o) evaluated as follows: () and (b) from the integral in (35)
using Simpson’s rule; and (c) and (d) from the matched asymptotic expressions in (36a) (solid line)
and (36b) (dashed line). (a) v =10; (b) v=2; (¢) v =10; (d) v = 2.

which, through the Airy function of the first kind, Ai[ ], describes the decay of the
Hankel function as it passes through the extinction point into evanescence. The two
asymptotic forms in (36) are matched in the oscillatory region somewhere close to the
extinction point. (The precise position of the matching point is generally not critical,
except perhaps when v is close to zero, in which case some care needs to be exercised.)
Equations (36) are plotted in figure 2¢ and d for v = 10 and v = 2, respectively. A
comparison with the exact forms in figure 2a and b reveals the remarkable precision
of the matched asymptotic approximations. Even for small values of v, of order
unity, representing an extreme low-frequency condition in which the profile is about
to cease supporting normal modes, the matched asymptotic expressions are
essentially exact.

The zeros of the Hankel function can now be determined directly from (36a), since
they occur when the argument of the cosine function is an odd multiple of }n. Thus,
the mth zero, o = ¢, is the solution of the transcendental equation

vin[v++v (2= ) o, l—vV (=0 )—im=32m—1)n, m=1,2,.... (37)

For v somewhat larger than o, a good approximate solution of (37) is obtained by
neglecting o,, in both radicals. This yields the result

o, X 2vexp (n/4v—mn/v—1), (38)

showing that o, decays exponentially with mode number.

The ‘exact’ zeros of HY),(jo) may now be calculated from (37) by using Newton’s
iterative root-finding formula, taking the approximation in (38) as the starting value.
Table 1 shows the first ten zeros calculated in this way and, for comparison, the
approximate values from (38). Although there is reasonable agreement, improving as
m increases, the approximate zeros are consistently too low, a discrepancy that
would lead to a violation of the pressure-release boundary condition if the
approximate values were used to characterize the modes. It is therefore important
to solve (37) ‘exactly’ for o,,, a procedure which requires negligible computational
effort, typically involving no more than five iterations to achieve convergence.

At low frequencies, corresponding to small values of v, a small mismatch between
the asymptotic forms in (36) may occur if the matching point is not chosen carefully.
This is a minor problem, but nevertheless one that may be avoided, once the
eigenvalues have been determined from (37), by using as an alternative to (36) a
uniform asymptotic approximation derived from Langer’s (1932, 1949) turning point
theory (Balogh 1967 ; Olver 1974):

U, (o) & —24/2v8(Q/ (V2 —0?))t Ai (—15Q), (39a)
Phil. Trans. R. Soc. Lond. A (1991)
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/2 u- plane

7,3 I —

Figure 3. Path of integration D in the complex u-plane.

Table 1. Zeros of H® (jo) for v = 10 from (37) (exact) and (38) (approximate)

—iv

m o, (exact) o, (approx.)
1 6.5043 5.8131
2 4.4693 4.2459
3 3.1818 3.1012
4 2.2954 2.2651
5 1.6660 1.6545
( 1.2129 1.2084
7 0.8844 0.8826
8 0.6454 0.6447
9 0.4711 0.4709
10 0.3440 0.3439
2_ 2 2 2\
where Q= {g[ln(”V(; 7 ))—V(VV 7 )]} (390)

Although valid for all o on both sides of the extinction point, (39a) is slower to
compute than the matched asymptotics, through the presence of the Airy function
over the full range of o.

Some elementary algebra applied to the first-order approximation in (36a) yields

the expression
2\ (P —0o2)
~(—1)™2 L 40
. (=1 A/ (n) - (40)

This result will be used later in the denominator of the coefficient in the mode sum.

U,
do

4.2. The Hankel function H®, (jo)
The coefficient in the mode sum also contains the Hankel function of the second
kind of imaginary order. For reasons to do with convergence, it is not possible to
express H®) , (jo) (o real and positive) as an integral along the real axis between + oo

but it can be represented as the contour integral (Lebedev 1965)

e H® , (jo) = _]inJ exp{jvu+ o cosh u}du, (41)
D

J

where the path of integration D is shown in figure 3. (The exponential normalization
ensures that excessively large values are not encountered when v > 1.)
By examining the turning points of the exponent in the integrand, it may be shown

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. (@) Mode shapes 1-8 as a function of normalized depth for v = 10. (b) Mode 5 for four
values of v, indicating the effect of progressively increasing the frequency. See text for details of
both diagrams.

that there is only one saddle point on the contour, on the path to the right of the
imaginary axis. A straightforward steepest-descent analysis yields
1 v/(@2m)

e H® (jon) X ——
—i(v) m . 1
JR(VP =0},

X expj{vln [%@]—\/(1}2—0’%)—%}

= (—1)"/(2/m) (P —02,) . (42)

The final expression here derives from (37) for o,,. Obviously, since o, is always less
than v, the second-order asymptotic form is not required in this case. The accuracy
of the approximation in (42) is comparable with that of the asymptotic expressions
in the preceding section.

m

4.3. Physical properties of the normal modes
By setting
N =3 O/ % (43)

where o, is the solution of (37), and defining { = z/z, as the depth (below the origin)
normalized to the z-coordinate of the surface, the (normalized) mode functions can
be written as U (o, {). These functions are orthogonal with weight ¢ on the interval
[1,00] (i.e. over the water column), as may be proved using standard theory of
orthogonal functions. They are given by either the matched or uniform asymptotic
forms in (36) and (39), respectively ; and, through the characteristic equation in (32),
it is evident that they satisfy the pressure-release condition on the surface, where
{=1.

Figure 4a shows the first eight (normalized) modes as a function of depth for
v = 10. The mth mode shows m extrema, successive modes are opposite in sign
immediately below the surface, and the amplitude of the oscillations shows a small
increase just before extinction occurs. The extinction depth, ., defined by the
equality of argument and order, is

Cext = Zext/2s = v/ 0y R jexp{(m—g)n/v+1}, (44)

where the approximation follows from (38). Thus, as the mode number increases, the
oscillatory part of the mode carrying the energy penetrates deeper into the ocean, as

Phil. Trans. R. Soc. Lond. A (1991)
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illustrated in figure 4a. The asterisk at the base of the oscillatory region of each mode
depicts the extinction depth; and as the asterisks are closely rectilinear, on a
logarithmic depth scale, the dependence of the extinction depth on mode number is
seen to be exponential, in accord with (44).

The zeros of the modes are distributed in such a way that multimode suppression
may be achieved by selecting the depth of the source (receiver) appropriately. To
illustrate the phenomenon, we refer again to figure 4 @, where the black dots on modes
3-8 indicate the second zero measured down from the surface, and the horizontal
dotted line signifies the depth of the source (receiver). For modes 5 and above the
source (receiver) is at a null, so none of these modes is excited (detected). The same
is true of mode 1, because it has passed into extinction. Mode 2, on the other hand,
is strongly excited (detected), mode 3 moderately so and mode 4 only weakly. Thus,
a source (receiver) at the depth of the second zero primarily excites (detects) the
second mode, with small contributions also appearing from modes 3 and 4, while all
remaining modes are nullified. This argument may be generalized to the qth zero and
the gth mode; and from (36a), the depth z, at which the source (receiver) should be
located to select the gth mode is

z, X 25exp (qn/v), ¢=1,2,.... (45)

An example of multimode suppression is discussed in connection with sound
transmission in the Arctic Ocean in §5.

As well as depending on mode number, the extinction depth varies with frequency,
through the presence of v in (44). Figure 4b illustrates the frequency dependence of
mode 5. The extinction depth, depicted by the asterisk, rises with increasing
frequency, effectively compressing the mode into a shallower region of the ocean.
Thus, a receiver located at the depth of the horizontal dotted line detects the mode
when v =4 and v = 8; but when v = 12 the receiver coincides with the extinction
depth, above which most of the energy in the mode is concentrated; and at higher
values of v the mode is no longer detectable, having passed into extinction. This is
an example of mode drop-out, a phenomenon which will be re-examined in §6 on
sound propagation in the surface bubble layer. The extinction frequency of a mode,
defined as that frequency at which the extinction depth and the receiver depth are
coincident, occurring when v = 12 in the example of figure 4b, is given by the
expression

fext = (Coo/Qthl) \/(Vgxt+%)> (460’)

where, from (37) and (44),
Vext = (m—3) n¢/{CIn (E+ /(&= 1) —V(F—1)}. (460)
Alternatively, we may refer to f,,, as the drop-out frequency of the mode.

4.4. The mode sum

With a little algebra applied to the results of the preceding subsections, the sum
of normal modes in (31¢) can now be reduced to the following form :

_ TRV (27))
Com = 1622

T

V(=)

where the mode functions, U,( ), are expressed with precision by either the matched
or uniform asymptotic forms in (36) and (39), respectively. The eigenvalues, o,

r

z

m

Uy<o-,,,§>Uy<om§’>H3"<v<k;zs+o-3n> ) (@)

S
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are the solutions of (37). (Notice that the exponential normalizing factors in the mode
functions cancel out of the mode sum.)

In most acoustic transmission problems the range and frequency are such that the
Hankel function of zero order can be accurately represented by its asymptotic form:

HP (p,,7) &/ (2/py, ) €™ exp (jp,, 1), (484a)

where the familiar factor 7% is characteristic of cylindrical spreading. The horizontal
wavenumber, p,,, is

P =V (k% 2+ 07)/ 2, (48b)

from which it follows that, as o, is real for all mode numbers, however high, p,, also
is always real. Since the argument shows no transition from real to imaginary values,
the Hankel function in (48a) is oscillatory for all the modes, that is to say there is
no mode cut-off and there are no evanescent modes. (The evanescent region of each
mode beneath the extinction depth should not be confused with an evanescent mode,
which does not propagate in range.) The absence of mode cut-off in the inverse-square
profile contrasts with the situation in say the Pekeris (1948) channel, where cut-off
is a function of the channel depth and frequency. Cut-off also occurs in profiles
showing a sharp discontinuity in gradient, as discussed by Labianca (1973) in
connection with a bilinear refractive index profile. In the inverse-square profile, there
is no physical constraint (boundary) to prevent the modes from extending indefinitely
in depth, and hence no mechanism whereby mode cut-off could occur.

However, the modes do undergo attenuation with increasing mode number,
although this is a relatively slow process compared with the abruptness of cut-off.
The decay arises from the presence of the factor g2, in the numerator of the mode
coefficient. In this context we define the mode strength as o,,, which, according to (44),
decays exponentially with mode number and enjoys a reciprocal relationship with
the extinction depth:

Om gext =V (49)

In essence this states that shallow modes are strong, deep modes are weak. (N.B. The
mode strength, o,, is distinct from the mode amplitude, the latter being the
amplitude of the function U, (o, §), which is usually of order unity.)
Given that the frequency, the source depth and receiver depth are fixed, there is
a ‘window’ of modes, numbers M, up to M, say, which contribute significantly to the
field. Those modes below M, are essentially zero, having passed into extinction,
whereas above M, the modes are heavily attenuated by the square of the mode
strength, o2, in the mode coefficient. An estimate of M, is found by setting m = M,
in (44), to yield
M, ~[In(2))—1]v/n+} or M, =1, (50)

whichever is the greater. Taking as a measure of M, a reduction in the mode strength
by a factor of e7!, that is,

Tu,/Tu, = Xp{— (M, —M)m/v} =7, (51)
it follows that M,~M,+v/n. (52)

If AM, representing the number of significant modes is defined as the difference
between M, and M,, then

AM = M,—M,)=v/n~k,z/m, (53)
Phil. Trans. R. Soc. Lond. A (1991)
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which indicates an approximately linear scaling of AM with both frequency and the
profile parameter z,. Notice that AM is independent of the receiver depth, even
though the mean mode number

M) = %(Ml +M,) (54)
increases with increasing z.
There is a similarity between (53) for AM and the expression for the total number
of propagating modes, M,,,,, in a conventional isotropic waveguide with plane,
parallel pressure-release boundaries of depth A:

Mooy = kh/m, (55)

where k is the wavenumber of the source radiation. In view of the analogy between
the role of 4 in determining the number of propagating modes in the parallel-sided
waveguide and that of z; in governing the number of significant modes in the inverse-
square profile, the latter may be interpreted as the ‘effective depth’ of the inverse-
square channel ; that is to say, with k = k_, a waveguide of depth A = z, supports the
same number of modes as the inverse-square profile defined in (1). It is noteworthy
that AM, the number of significant modes in the inverse-square profile, is independent
of the position of the sea surface, z,.

4.5. Interference wavelength

The oscillatory range dependence of the modes, represented by the Hankel
function of zero order in (48a), implies that at any given frequency there is mutual
interference between modes as they propagate away from the source. Modal
interference imparts a complicated structure to the sound field, which increases in
complexity as the frequency rises and more modes make a significant contribution to
the mode sum. Similar behaviour is observed in a waveguide with fixed boundaries.

When only two modes contribute significantly to the mode sum, a series of
interference peaks, regularly separated in range, feature prominently in the field. The
interference wavelength, 4., between the peaks associated with a pair of modes, m
and n, in an inverse-square profile is derived in the same way as for a conventional
waveguide (Tolstoy & Clay 1966), yielding

A R 22|V (k3 22+ 07,) =V (kS 28+ 07l (56)

This expression is used in §5.1.1 in the discussion of acoustic transmission in a
typical Arctic Ocean profile.

It is implicit, when a simple regular structure of interference maxima is observed,
that only a few significant modes are contributors to the field. In such circumstances,
(56) is a useful diagnostic tool for identifying those modes that are present. On the
other hand, in the presence of many significant modes (a situation commonly found
in the ocean) the interference structure tends to be very complicated, in which case
(56) loses its utility.

5. Arctic Ocean acoustics

In the ice-covered regions of the Arctic Ocean the sound speed shows a minimum
of approximately 1440 m s7! at the surface (Kuperman 1988), where the water is
coldest, and a positive gradient which may persist down to depths of several
thousand metres. Such a profile, in which the surface gradient is in the region of
0.05 s71, is very well represented by the upward-refracting (i.e. z, real) version of the
inverse-square expression in (1). Figure 5 shows an inverse-square profile, with z, =
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Figure 5. Inverse-square profile representative of Arctic waters (z, = 2000 m,
2, =525 m, and ¢, = 1490 m s71).
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Figure 6. Range plots (Arctic) of |G| from (47) for the source and receiver at the same depth
of 50 m (Q = 1). (¢) f=10Hz; (b) f =20Hz; (¢c) f=30Hz; (d) f =40 Hz.

525 m, ¢, = 1490 m s7! and z, = 2000 m, that is fairly typical of Arctic conditions. At
a frequency of 10 Hz the number of significant modes supported by this particular
profile is AM ~ 7; and at other frequencies AM is given by a simple linear scaling (e.g.
at 40 Hz AM = 28).

5.1. vLr propagation

In the infra-sonic frequency band (1-50 Hz) sound may propagate to long
distances in the Arctic Ocean, as discussed by Milne (1967) on the basis of ray
acoustics. Since ray theory is a doubtful approximation in the vLr band, a wave-
theoretic approach to the problem is more appropriate at these frequencies.
Attempts to compute the long-range acoustic field in the ocean using wave-theoretic
numerical models date back to the early 1960s (Dorman 1962). More recent models
include the fast field program (rrp) and sAFARI, developed, respectively, by Di
Napoli (1971) and Schmidt & Glattetre (1985). In essence, both models compute the
Green’s function in an horizontally stratified medium. A multilayered representation
is not an unreasonable approximation in a range-independent environment, and the
FFP has been applied by Kutschale (1973) to the problem of propagation in the Arctic
Ocean. Nevertheless, fast field programs, in common with most numerical
propagation models, are computationally intensive.

By comparison, the inverse-square theory is quick and easy to evaluate. Figure 6
shows the magnitude of the modal field, |G|, as a function of range, for frequencies
10, 20, 30 and 40 Hz. The curves were computed from (47) using the parameters of
the Arctic profile given above, with source and receiver set at the same depth of 50 m
below the surface. They show an average decay corresponding to cylindrical
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Figure 7. Range plots (Arctic) of |G| from (47) for source and receiver at the same depth of
112.4 m (@ = 1). Multimode suppression is evident in the curve for 30 Hz, as discussed in the text.
(@) f=10Hz; (b) f= 20Hz; (¢) f = 30Hz; (d) f = 40 Hz.

spreading (i.e. proportional to r‘%), superimposed upon which is a strong interference
structure. The fluctuations increase in rapidity as the frequency rises, indicating the
presence of an increasing number of significant modes in the field.

5.1.1. Multimode suppression and mode interference

Figure 7 shows similar range plots, for the same four frequencies, but with both the
source and receiver at a depth (below the surface) of 112.4 m. This depth has been
chosen advisedly to illustrate the phenomenon of multimode suppression, for at
30 Hz it coincides with the first zero in the higher-order modes. According to the
argument in §4.3, we should expect the field at 30 Hz to be relatively smooth in this
case, since it contains significant contributions only from the first three or four
modes, with little or nothing coming from the higher-order modes (the number of
significant modes is over 20). A comparison with the curve for 30 Hz in the previous
figure confirms that multimode suppression does indeed have a significant effect on
the field : the absence of the higher-order modes reduces the rate and amplitude of the
fluctuations at the selected frequency. At the other three frequencies the full modal
interference structure is retained.

Although the curves at 10 Hz vary more slowly than those at higher frequencies,
they still show considerable complexity due to the presence of several modes (AM ~
7). At lower frequencies the situation is simpler, as illutrated in figure 8, which shows
the magnitude of the velocity potential at a frequency of 2.5 Hz. The regular spacing
of the interference maxima indicates that only two significant modes are present and,
since the extinction depth of the first mode is approximately 2170 m (below the
surface) at this frequency, lying well below the receiver, it may be anticipated that
they are modes 1 and 2. This is confirmed by a calculation of the interference
wavelength from (56), which yields A;, = 93.6 m, closely matching the interval
between the peaks in figure 8.

Another aspect of multimode suppression is illustrated in figure 9 showing the
depth dependence of |7, |, for the profile in figure 5, at a range of 50 km from the
source. As in figure 7 the source is at a depth of 112.4 m, which, at a frequency of
30 Hz, coincides with the first zero of the higher-order modes.

At the lower frequency of 20 Hz (figure 9a) the first four modes are prominent in
the first 1200 m or so of the water column, at which depth mode four goes into
extinction. Below 1200 m the contribution from individual modes is less recognizable
but nevertheless the higher-order modes are present, as indicated by the more or less
uniform sound spectral level down to 4000 m and beyond.

At 30 Hz (figure 9b), the first four modes are even more strongly in evidence, in this
case at depths above 800 m, which is the extinction depth of mode four. The sound
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Figure 8. Range plot (Arctic) of |G, | from (47) for the source and receiver at
the same depth of 50 m (@ = 1). f=2.5Hz.
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Figure 9. |G, .| (Arctic) as a function of depth at a range of 50 km, from (47) (@ = 1). The source
depth is 112.4 m. The vertical dotted lines depict the extinction depths of successive modes,
starting with mode 1 at the extreme left. (a) f = 20Hz; (b) f = 30 Hz.

field is heavily attenuated at greater depths, most noticeably below 1300 m, where
the spectral level is about 10 dB less than that at the corresponding depths in figure
9a. The reduced level is almost entirely attributable to the failure of the source to
excite the higher-order modes.

A notable feature of figure 9 is the substantial variation of the low-frequency
sound field with depth in the upper reaches of the ocean. At 30 Hz, for example, the
first peak in figure 96 occurs at 300 m, the first trough is at 500 m, and the ratio of
the respective spectral levels is approximately 12:1 (10.7 dB). Similar though less
pronounced behaviour is exhibited at 20 Hz in figure 9a. Variations of such
magnitude, which are not confined to the viLr band or the polar oceans (see for
example fig. 5 of Farmer & Vagle (1988), showing three time series in a band centred
on 4.3 kHz, taken at depths of 1, 10 and 40 m in the open ocean, with levels falling
progressively by a total of at least 6 dB), are a factor to be considered in a number
of applications, including under-ice acoustic communication. Moreover, the strong
depth-dependence of the sound field from a single point source has interesting
implications with regard to the ambient noise field in the Arctic Ocean: at the very
least, the assumption of spatial homogeneity in the vertical is unlikely to be valid.
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Figure 10. |G, .| (Arctic Ocean) as a function of frequency from (47) (@ = 1), with the source and
receiver at the same depth (below the surface) of 50 m and separated in range by 10 km.

5.1.2. Power spectral density

The spectrum of the field in the Arctic profile, calculated from (47) with the
positions of the source and receiver fixed, is shown in figure 10. The ripples in the
spectrum are due to the lobular structure in the modes and intermodal interference.
As the source is impulsive (i.e. a delta function in time), showing a white spectrum,
the very rapid rise in spectral level with increasing frequency represents a genuine
transfer characteristic of the inverse-square channel. The increase in level occurs
because the number, AM, of significant modes in the field approximately scales with
frequency.

5.1.3. Infrasonic ambient noise

Few if any vLF acoustic transmission experiments in Arctic waters have been
reported in the literature, but measurements of the infrasonic ambient noise
spectrum in the marginal ice zone (m1z) off the east Greenland coast have been made
by Buckingham (19906) in a continuing series of airborne ocean acoustics
experiments in the Nordic Seas. Carefully designed vLF sonobuoys are deployed from
a fixed-wing research aircraft into leads of open water between ice floes. Each
sonobuoy has a single omnidirectional hydrophone suspended from a surface
flotation unit, and the signals are relayed back to the aircraft over a telemetry link.
(Occasionally, sonobuoys with horizontal and vertical directivity are also deployed,
though the results are not discussed here.) To avoid the severe problems of non-
acoustic interference which can be prevalent at infrasonic frequencies (Strasberg
1979) several precautions are taken with the vLF buoys, including the use of flow-
shielding on the hydrophones. In the final design, the acoustic signal from these
buoys is free of hydrodynamic flow and cable strumming effects down to a frequency
of 5 Hz.

The ice cover in the miz shows regional, seasonal and interannual variations
(Wadhams 1986). Figure 11 shows a high concentration of floes, whose angular
shapes indicate recent fracturing due to the action of a heavy sea (predominantly
swell). Although not necessarily typical of the miz, the high packing density
illustrated in the photograph supports the intuitively appealing hypothesis that
floe—floe interactions (bumping and rubbing) make a significant contribution to the
low-frequency ambient noise in the vicinity of the ice edge. Another possible source
of sound is the fracturing process itself.
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Figure 11. Recently fractured ice floes and meltwater pools in the mi1z off the east coast of
Greenland. The large central floe is about 30 m across. (Aerial photograph by the author.)
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Figure 12. vLF ambient noise spectrum from the M1z east of Greenland. (76° 37.6' N, 07° 32.2" W;
hydrophone depth & 160 m; 60 % ice cover; light wind, speed ~ 3.5 m s71; sea state, 1-2; swell,
nil; visibility greater than 10 km; 4 September 1988.)
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Whatever the source mechanism, figure 12 shows an M1z ambient noise spectrum
for low sea-state conditions and moderate ice cover. The averaging was performed
over 200 s with a spectral resolution of 0.5 Hz. The pronounced minimum close to
5 Hz is a ubiquitous feature of miz infrasonic noise spectra. (A similar minimum,
centred at 2-3 Hz, has been observed by Makris & Dyer (1986) in ambient noise
spectra recorded under pack ice in the central Arctic.) Between 5 and 20 Hz the steep
positive gradient is consistent with the inverse-square spectrum in figure 10, and
accordingly is interpreted as an effect of the propagation conditions in the upward
refracting Arctic channel (bearing in mind that most of the noise is generated by
distant sources). Above 20 Hz the spectrum ceases to rise, probably due to a
combination of mechanisms, including absorption in the ocean, acoustic scattering
from the surface, and the nature of the source spectrum. Below 5 Hz the very steep
negative gradient resembles the spectral shape of ambient noise generated by
nonlinear wave-wave interactions (Kibblewhite 1988) but, in view of the partial ice
cover and low sea state, is more likely to be an artefact of the measurement system,
since it is known that flow noise may be present in this frequency range.

5.2. Ocean-acoustic tomography : Greenland Sea experiment

Ocean-acoustic tomography is a technique for mapping the internal structure of
the ocean from measurements of the travel times of rays or modes between the
elements of a transducer array (Munk & Wunsch 1979). Such an array, of six
elements, 200 km aperture, and an operating frequency of 250 Hz, was deployed in
September 1988 for about a year at a depth of 95 m in the Greenland Sea, roughly
midway between Jan Mayen and Svalbard, under partial ice cover (Guoliang &
Wadhams 1989). In this location the water depth is 3660 m.

Based on the profile in figure 5, the structure of the modal field generated by the
tomographic sources is readily deduced : the first mode is absent, since its extinction
depth is 55.7 m, some 40 m above the array; the extinction depth of the second mode
is 99.44 m, so this and higher-order modes are present ; and the number of significant
modes, AM, is approximately 175. Of these modes, numbers 136 (whose extinction
depth is 3693 m) and above suffer bottom interactions, as a result of which they are
likely to be severely attenuated.

5.2.1. Group velocity of the modes

Since the medium is dispersive, the modes show a spread of arrival times. The time
for the mth mode to traverse the array is determined by its group velocity, U,,, which
from the inverse-square theory is

dpm~pmcoo Tm =1 ? 17}_ o
Up=3m~te {1+( L+ m=p—1r - (57)

e <

Notice that this expression depends on the profile parameters and frequency, but not
the depth of the array. Thus, with all else equal, the travel time of a given mode
across the array is independent of the position of the array in the water column.
Equation (57) is plotted in figure 13 as a function of frequency for a selection of the
first 140 modes. Clearly, the high-order modes travel fastest, thus constituting the
earliest arrivals. At 250 Hz, modes 2-10 have closely similar group velocities and
hence arrive almost simultaneously towards the end of the transmission.

To facilitate interpretation of the tomographic signals, it is desirable that the
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Figure 13. Group velocities of modes in the Arctic profile of figure 5.
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Figure 14. Interval between the arrivals of consecutive modes at a receiver in
the Greenland Sea tomographic array.

modal arrivals should be well separated in time. Since the travel time of the mth
mode is

where L = 200 km is the aperture of the array, the time interval between consecutive
arrivals, say m+1 and m, is
O = tyi1—tm- (58b)

Figure 14 shows &8¢, as a function of m. At the operating frequency of 250 Hz, the
mean interval between arrivals is {(8¢,,> = 8.3 ms, although the interarrival times
are less than half this value for modes m < 10. The duration of the received signals,
that is to say the time between the first and last arrivals, is 7= 1.13 s.

There may be some advantage to be gained by working at a lower frequency. At
50 Hz, for instance, the group velocity curves in figure 13 are well separated for all
mode numbers, implying a wider spread of arrival times. In this case, the number of
significant modes is AM & 35, none of which is in extinction. (The extinction depth
of the first mode is 169 m.) Modes 28 and above interact with the bottom, and hence
are negligible. As shown in figure 14, the interarrival times at 50 Hz are substantially
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higher than those for the 250 Hz signal, with a mean time between consecutive
arrivals of {dt,,> = 41.0 ms, corresponding to an expansion factor of 5. The duration
of the received signal is 7' = 1.15s.

In addition to the improved arrival structure, losses due to surface scattering and
absorption are reduced at lower frequencies, which translates into a higher intensity
(or signal-to-noise ratio) at the receiver. This could be beneficial, since timing
precision is sacrificed at low signal-to-noise ratios. On the other hand, temporal
resolution is inherently poorer at lower frequencies. A further penalty is the implied
practical difficulties, notably the size, weight and complexity of the sources.

6. Ambient sound in a bubbly surface duct

Over the past five years or so there has been an accelerating interest in extracting
information about the ocean and its boundaries from the ambient noise field that is
naturally present below the sea surface. For example, the speed of sound in the
bottom sediment has recently been determined by Buckingham & Jones (1987) from
measurements of the vertical directionality of the ambient noise field in continental
shelf waters at six sites around the coast of the U.K. ; the size distribution of bubbles
near the surface, in Queen Charlotte Sound, British Columbia, has been estimated by
Farmer & Lemon (1984) from measurements of ambient sound at several discrete
frequencies between 4.3 and 25 kHz; and surface-wave distributions have been
inferred by Farmer & Vagle (1988) from observations of the acoustic signatures of
wave-breaking events in the fetch limited environment of Georgia Strait, British
Columbia.

With regard to surface processes, ambient sound has the potential, as a remote
sensing tool, for providing information on gas fluxes across the air-sea interface,
rainfall rates over the ocean, and surface weather conditions in general, including
wind speed and direction. To interpret the acoustic observations, however, it is
necessary to understand the propagation conditions in the immediate vicinity of the
surface. The mechanism which is largely responsible for the acoustic properties of the
ocean just below the surface is wave-breaking.

Wave-breaking events entrain air in the ocean, thus creating a bubble layer
immediately below the sea surface (Thorpe 1984a). The concentration of bubbles
decreases rapidly with depth (Thorpe 19845), following an exponential or faster
decay law, with an e-folding depth of order 1 m, so most of the bubbles lie within
2-3 m of the surface (Medwin & Breitz 1989). Since a small volume fraction of air (less
than 0.01 %) in sea water is sufficient to reduce the sound speed in the medium by
several tens of metres per second (Wood 1964), it may be expected that the sound
speed is less in this near-surface layer, due to the presence of entrained air, than at
greater depths. Indeed, measurements by Farmer & Vagle (1989), hereafter referred
to as FV, have confirmed that the sound speed in the near-surface bubble layer
increases monotonically with depth, showing a shape that conforms closely with that
of the inverse-square profile.

Two examples of bubble layer profiles, as observed by FV near La Perouse Bank,
west of Vancouver Island, and in the FASINEX experiment in the North Atlantic,
approximately 200 miles southwest of Bermuda, are depicted by the crosses in figure
15. The inverse-square expression in (1) has been fitted to these data points, to yield
the solid lines in the figure. The parameters of the profiles are as follows: z; = 0.12 m,
zs=18m and ¢, = 1500 m s~ (La Perouse); z, =0.297m, z,=1.8m and ¢, =
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Figure 15. Sound speed profiles for () La Perouse and (b) rasinex. The crosses are data points
taken from FV and the solid lines represent the inverse-square profile (see text for values of the
parameters). Notice the different sound speed scales. The effects of dispersion in the bubble layer
are negligible at frequencies below 20 kHz.

1500.5 m s (FasINEX). Note that the principal difference between these two sets of
parameters is in z,, the effective depth of the channel, the value for FASINEX being
larger than that for La Perouse by a factor of about 2.5. A brief account of the range
and depth dependence of the modal field in La Perouse profile, as predicted by the
inverse-square theory, can be found elsewhere (Buckingham 1991); in the present
discussion we shall concentrate on the spectrum, for comparison with the
observations of sound produced by individual wave-breaking events reported by FV.

Figure 16 shows two sets of measured spectra, for FAsINEX and La Perouse (by
courtesy of Farmer & Vagle). These spectra originally appeared as figure 10 of FV.
Three wave-breaking signatures, each of duration five seconds or so, are shown for
each location. Qualitatively, the spectra from the two sites are quite distinct: those
from La Perouse show well-defined spectral peaks separated by about 3 kHz, whereas
the data from FASINEX are smoother, with the energy distributed in spectral bands,
which are separated by ‘forbidden gaps’ roughly 4 kHz apart. For several reasons,
including the observation of small shifts in the positions of the peaks and bands from
one wave-breaking event to the next, these spectral features are believed to be
genuine acoustic effects and not artefacts introduced by the instrumentation (D. M.
Farmer, personal communication, 1990).

The spectral structure in both data-sets was interpreted by F'V as being due to the
wave-guiding effect of the bubble layer. On the basis of an exponential representation
of the sound speed profiles for the two sites they derived mode functions, calculated
drop-out frequencies (or in their terminology, ‘cut-off” frequencies), and attributed
the observed spectral features to the drop-out mechanism. However, although there
is a rough correspondence between their calculated drop-out frequencies and the
positions of the observed peaks in La Perouse, there are subtle differences; and the
banding in FASINEX is not explained at all by the drop-out hypothesis. A full
analytical description of the spectrum is also absent from the theoretical treatment
of FV.

Nevertheless, the wave-guiding effect of the bubble layer does appear to be the
physical mechanism responsible for the peaks and bands observed in the wave-
breaking spectra, and it is fair to regard the interpretation of F'V as a ‘first-order’
description of the processes involved. A fuller treatment is developed below, based
on inverse-square transmission, which as we shall show, not only accounts for the
qualitative dissimilarity of the La Perouse and FASINEX spectra, but also provides a
complete spectral description of the wave-breaking signatures. The theoretical
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Figure 16. Measured spectra of six wave-breaking events, three in (¢) FAsINEX and three in (b) La
Perouse. (By courtesy of Farmer & Vagle.) The mean slope has been removed from these spectra
to emphasize the rather small spectral modulation. The horizontal lines indicate the mode drop-out
frequencies as calculated by Farmer & Vagle from their exponential profile. Almost identical drop-
out frequencies emerge from the inverse-square theory (cf. figure 17).
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spectrum shows detailed agreement with both data sets. It emerges from the theory
that the differences in form between the La Perouse and FASINEX spectra are due
solely to the differences between the respective sound speed profiles.
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Figure 17. Inverse-square spectrum for the La Perouse profile (solid line), with source depth of
1.5 m, receiver depth of 14 m, both measured from the surface, and horizontal range between
source and receiver of 10 m. The vertical dotted lines indicate the drop-out frequencies of modes
1-6, and the horizontal, cross-hatched stripes depict experimentally observed spectral maxima,
read from figure 160.

Figures 17 and 19 show the spectra for La Perouse and FASINEX, calculated from
the inverse-square modal theory. The receiver depths are 14 m and 24 m,
respectively, in accord with the experimental arrangements of FV, the source depth
has been chosen as 1.5 m, and in both cases the horizontal range between the source
and receiver has been set at 10 m. Each vertical dotted line in figure 17 depicts the
drop-out frequency of the indicated mode. Since drop-out is not an abrupt process,
due to the evanescent tail on each mode, a given mode will continue to contribute to
the field at frequencies slightly above the indicated drop-out frequency.

6.1. Theory: La Perouse

Considering La Perouse first, the theoretical spectrum in figure 17 shows well-
defined, regularly spaced maxima located approximately 3 kHz apart. These isolated
peaks in the inverse-square spectrum can be seen to show no obvious correlation with
the computed mode drop-out frequencies (vertical dotted lines), confirming our
assertion that the mechanism of mode drop-out is not sufficient in itself to explain
the positions of the peaks (and nulls) in the spectrum. In general, the spectral peaks
and troughs are a manifestation of intermode interference, the detailed structure of the
interference pattern being determined by the number, AM, of significant modes
contributing to the field. Since AM increases with rising frequency (see the discussion
towards the end of §4.4), the modal interference shows progressively greater
complexity in the higher-frequency ranges.

To help clarify the interference mechanism, figure 18 shows the contribution to the
La Perouse theoretical spectrum made individually by each of the first six modes (i.e.
the magnitude of each term in the mode sum). On comparing figures 17 and 18 it can
be seen that the first three (i.e. lowest frequency) peaks in the full spectrum are
associated solely with modes 1, 2 and 3, respectively, with interference between
modes having little to do with the positions of these maxima. However, the nulls
between these peaks are obviously an interference phenomenon. The higher-
frequency maxima in the full spectrum are due largely, in this case, to interference
between two or more modes. For example, it can be seen from figure 18 that the fifth
peak in figure 17, centred just above 14 kHz, results mainly from the coherent
addition of modes 4, 5 and 6. For convenience, we shall refer to all such peaks as those
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Tigure 18. Magnitude of each of the first six modes in
the theoretical La Perouse spectrum of figure 17.

in figure 17 as interference maxima, regardless of whether they are associated with
only one mode (since this is just a special case of the more general situation) or are
the result of constructive interference between several modes.

Clearly, the theoretical peaks in the spectrum of figure 17 are similar to the
experimentally observed peaks in figure 16b. For a detailed comparison, the
bandwidth of each experimental peak has been estimated from figure 166 (read at a
point 2.4 s into the first event, by which time the wave-breaking is well developed)
and superposed on the theoretical spectrum in figure 17 in the form of (six) horizontal
cross-hatched stripes. Thus, each stripe represents a spectral region (peak) of high
intensity in figure 16b. There is clearly a remarkably good correlation between the
theory and the observations, with a one-to-one correspondence between the
theoretical and experimental spectral maxima. Incidentally, since an impulsive
(‘white’) source was assumed in the derivation of the theoretical spectrum, only the
positions and not the relative sizes of the inverse-square peaks are significant with
regard to the acoustic signature of wave-breaking events, for in reality the sound is
almost certainly generated by a population of bubbles, whose source spectrum is
probably far from being white.

6.2. Theory : FASINEX

The appearance of well-defined, isolated spectral maxima in the acoustic data from
La Perouse may be fortuitous. According to the inverse-square theory (Appendix C),
the width of such peaks, Af,, depends critically on the size of the parameter z, : larger
values of z,, characterizing deeper ducts, give rise to a greater number of interfering
modes and a higher density of narrower spectral peaks. As it happens, the duct was
sufficiently shallow at La Perouse to support, at any given frequency in the
experimental range, only two or three significant modes, each of which exhibits well-
separated, broad spectral peaks (figures 166 and 17). If, in general, surface bubble
layers are deeper than that observed at La Perouse, then the resultant, relatively
narrow, spectral peaks may be smeared together, due to oceanic fluctuations, in
which case observations of individual maxima could be the exception rather than the
rule.

In any event, the duct in FASINEX is somewhat deeper than that in La Perouse
(recall that the ratio of z, (FASINEX) to z, (La Perouse) is approximately 2.5:1), and
the spectrum (figure 19), according to the inverse-square theory, does indeed show a
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Figure 19. Inverse-square spectrum for the FASINEX profile (solid line), with source depth of 1.5 m,
receiver depth of 24 m, both measured from the surface, and horizontal range of 10 m. The
horizontal cross-hatched stripes depict the frequency bands where high acoustic energy was
observed experimentally, as read from figure 16a.

higher density of narrower maxima. (There are about six significant modes at
15 kHz, compared with two for La Perouse.) It is particularly noteworthy that the
amplitude of the spectral peaks is modulated by a slowly varying envelope, which
clusters the peaks into groups of three or four, to form a spectral band-structure. (A
similar modulation is present in the theoretical spectrum for La Perouse in figure 17,
though less noticeable because it is so much slower.) As discussed in §6.4, the
amplitude modulation is directly related to the source depth. For the prescribed
parameters of the FASINEX profile, with a source depth of 1.5 m, the nulls in the
envelope (‘forbidden gaps’) in figure 19 are approximately uniformly spaced and
centred on frequencies 4.2, 8.4, 12.6 and 16.8 kHz.

As we have already seen, spectral bands (rather than isolated spectral peaks),
separated by ‘forbidden gaps’, are also a feature of the rasiINEX data in figure 16a.
For comparison with the theory, the width of each band, read from the first event
in figure 16 at a time of 2.4 s after the onset of wave-breaking, is superposed (the
horizontal cross-hatched stripes) on the spectrum in figure 19. Again, the agreement
between theory and experiment is compelling. Such accord is all the more remarkable
in view of the unsteady, irregular structure of the bubble layer, and the roughness
of the sea surface.

To illustrate the complexity of the modal interference mechanism, just four of the
modes contributing to the theoretical spectrum in figure 19 are shown in figure 20,
that is to say, each curve in the figure represents the magnitude of a single term in
the mode sum. Note that each mode shows a multilobe structure, with more peaks
appearing in the higher-order modes, to the left of the drop-out frequency. Mode 17,
for example, exhibits five maxima between 13 and 20 kHz. The level of the secondary
peaks (which were overlooked in FV) may well be comparable with that of the
principal maximum.

Each mode occupies a relatively broad frequency band, comparable in width with
the centre frequency, as illustrated in figure 20. The mode bandwidth is an ill-defined
quantity, but spans the frequency range where the energy in the mode is appreciable.
Roughly, this range extends from just above the mode drop-out frequency, at the
upper end, down to a frequency below which all the lobes are negligibly small. Thus,
the bandwidth of mode 12, for example, is about 11 kHz, with lower and upper limits
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Figure 20. Magnitude of modes 3, 8, 12 and 17 in the theoretical FASINEX spectrum of figure 19.

of 5 and 16 kHz, respectively. At each frequency, of course, a number of modes
overlap and combine coherently to form the banded spectrum shown in figure 19.

6.3. Interpretation of the wave-breaking spectra

Although the interference mechanism involves an intricate meshing together of
modes, the resultant theoretical spectra in figures 17 and 19 show a fairly simple
form, consisting of a series of regularly spaced interference peaks, which are slowly
modulated by an envelope function. A simple argument, developed in Appendix C,
shows that the interference peaks are governed by the receiver eigenfunction in the
mode sum, whereas the modulation is controlled by the source eigenfunction. The
width of the interference peaks is

Afy =~ ¢ /22, 1In (2/2), (59a)
with an analogous expression holding for the broader maxima in the modulation :
Afy=x e /22, In (2 /). (590)

The spectra from La Perouse in figure 165 show little evidence of modulation but
the width of the spectral peaks is very close to the theoretical value Af, ~ 2.88 kHz
calculated from (59a), as expected from the correspondence between theory and
experiment in figure 17. Conversely, the FASINEX spectra in figure 16a show a
pronounced modulation structure (the spectral bands), with little sign of spectral
peaks within the bands. The width of each band, according to (59b), is Af; ~
4.17 kHz, confirming the agreement between theory and experiment that has
already been demonstrated in figure 19. A closer examination of the rFAsiNEx data
reveals traces of high intensity spectral peaks within the band from 4 to 8 kHz, and
the width of these vestigial peaks is consistent with the value Af, ~ 0.95 kHz
calculated from (59a).

We are now in a position to explain the qualitative differences between the La
Perouse and rasINEX spectra. The well-defined spectral peaks in La Perouse arise
from modal interference; and the apparent absence of amplitude modulation is
attributed to the fact that, because the channel is so shallow (z, = 0.12 m), the
modulation is too slow to be discernible (Af; ~ 10.31 kHz). In FASINEX, on the other
hand, the channel is 2.5 times deeper (2, = 0.297 m) than that in La Perouse, hence
the modulation is faster and is perceived as the broad band structure in the measured
spectra. The ‘forbidden gaps’ between the bands correspond to nulls in the
modulation envelope. Within the bands in the FASINEX spectra, the barely discernible
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Figure 21. Inverse-square spectrum for FASINEX, as in figure 17, except that the source depth is
reduced to 0.5 m. With this shallower setting the modulation does not match the data in figure 16 a.

fine structure (apparent in the original colour plates in F'V) can be identified with the
narrow interference peaks, which have probably suffered a certain degree of spectral
smearing as a result of oceanic fluctuations.

6.4. Inverse solution for the source depth

The presence of 2’ in (59b) implies that a direct measure of the source depth can
be obtained from the spectral period, Af,, of the modulation, provided the
parameters of the profile are known. Thus, we have a solution to the inverse problem
of determining the source depth, d’ = (2’ —z), once the spectrum is known. To be
explicit, from (590),

' = (2 —2,) = 7 {exp (¢,,/22, A7) — 1. (60)

Regarding this expression as an estimator of the source depth, suppose we consider
the width of the modulation required to produce a reduction in d’ by a factor of three,
to 0.5 m: Af; = 10.31 kHz. The associated inverse-square spectrum is illustrated in
figure 21, from which it is clear that the nulls in the envelope no longer match the
‘forbidden gap’ structure in the FASINEX data. On this basis it appears that the
modulation structure is a sensitive, robust indicator of source depth.

The close correspondence between the theoretical and experimental ‘forbidden
gaps’ in figure 19 suggests that the source depth of 1.5 m emerging from the inverse-
square theory is representative of the actual depth of the sources in the FASINEX
experiment. It is not clear why the sources should be so deep, although it is not
inconceivable that a number of acoustically active bubbles were concentrated
around a depth of 1.5 m. There is little doubt, from the measured backscatter cross
sections for the FASINEX area, shown in fig. 5a of FV, that a high concentration of
bubbles did exist down to a depth of about 1.5 m beneath the surface, but
presumably these bubbles were mostly mature and therefore quiescent. From the
available supporting information, it is not possible to establish independently the
depth distribution of the acoustically active bubbles in FASINEX. And as the La
Perouse data show little evidence of a modulation structure, they do not provide an
additional source of information on the depth of the acoustic sources. (One might
surmise that as the bubble layer is shallower in La Perouse so too are the sources.)

To speculate as to why bubbles at the bottom of the surface layer should be more
effective acoustic radiators than those nearer the surface is likely to prove fruitless

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

546 M. J. Buckingham

in the absence of more details on both the bubbles’ dynamics and the processes which
influence acoustic propagation through the bubbly medium (including absorption,
re-radiation and scattering by other bubbles in the layer). It should be mentioned
that the roughness of the sea surface could, perhaps, be responsible for leading to an
exaggerated estimate of the depth of the bubble sources. Although this cannot be
entirely discounted, the detailed correspondence between the theoretical and
observed spectra indicates that, at least over horizontal ranges which are shorter
than the wavelength of the dominant surface waves, the bubble layer behaves as a
deterministic waveguide with a planar, pressure-release boundary. If surface
roughness were a significant factor, such behaviour would not be expected.

Since the spectra reported by FV were all recorded under similar wind speeds,
around 10 to 12 m s, it would be of considerable interest to examine data taken
under different wind conditions (as suggested by M. S. Longuet-Higgins, personal
communication, 1990), to establish the effect of wind speed on the modulation
structure. With the expression in (60), it should then be possible to determine the
depth of the acoustic sources as a function of wind speed. This may help resolve some
of the questions to which we have already alluded, particularly those concerning the
significance of multiple scattering. At present, apart from the inference drawn above
that the principal FASINEX sources are located at a depth of 1.5 m, no information on
the depth distribution of acoustically active bubbles in the ocean is known to the
author. (Oscillating bubbles from spilling breakers have been observed within a few
millimetres of the surface by Medwin & Beaky (1989) and Medwin & Daniel (1990)
under wind-free conditions in a laboratory tank; and in similar circumstances
Melville et al. (1988) have shown that there is a strong correlation between the
microwave return from a breaking wave and its sub-surface acoustic signature.)

6.5. Alternative mechanisms

The detailed correlation between the inverse-square theory and experiment lends
support to the conclusion that, in general, intermode interference is the mechanism
responsible for well-defined spectral peaks in shallow bubble layers, or broader
spectral bands in deeper ducts, in the acoustic signatures of wave-breaking events.
Of the two alternative mechanisms that have been proposed, one is mode drop-out
on its own, or more specifically, the appearance of a peak in the spectrum just below
the drop-out frequency of each mode. This mechanism is the basis of the analysis in
the pioneering paper by FV. But as we have seen (figure 17), the drop-out frequencies
show subtle but distinct deviations from the positions of the peaks in the La Perouse
data; and the drop-out process is unrelated to the spectral banding observed in
FASINEX. The second proposal, by Longuet-Higgins (1990), attributes the observed
spectral phenomena to the source rather than the propagation conditions. He
invokes resonances in nonlinear bubble oscillations as the mechanism responsible for
the observed spectral peaks, and shows that such resonances can give rise to
significant levels of sound in the ocean at well-defined frequencies in the band
between 1 and 100 kHz.

The nonlinear shape-oscillation mechanism may account for the appearance of
peaks in bubble-noise spectra taken in a laboratory tank, with no wind over the
surface, as observed by Medwin & Beaky (1989) and Medwin & Daniel (1990). Such
oscillations may also be at least partly responsible for the presence of spectral peaks
in McConnell’s (1983) measurements of background noise in the Pacific with a
hydrophone at a depth of 60 m, well below the surface bubble layer. A similar
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comment applies to the noise data from the Behm Canal, Alaska, taken by McConnell
& Schilt (1989), with a hydrophone at a depth of 120 m. But in open-ocean
observations with the hydrophone located in or close to the bubble layer, as in the
La Perouse and FASINEX experiments conducted by FV, the factor governing the
structure of the noise spectrum would seem to be the upward-refractive propagation
conditions.

7. Concluding remarks

Immediately below the surface of the ocean the variation of sound speed with
depth often takes a form that can be accurately represented by an inverse-square
profile. Examples include the surface channel in the mixed layer and the upward-
refracting stratification found in polar waters. In such conditions, acoustic energy,
especially at low frequencies, may propagate to long ranges in the form of normal
modes.

An exact, complete theory of acoustic propagation in an inverse-square profile,
developed above, shows that the total field consists of the normal mode component
plus a near-field, branch line integral that gives the field singularity at the source
position. Certain unusual aspects of the branch line integral have been mentioned in
this paper, although the main emphasis has been placed on the normal mode sum
because, in many experimental situations, it is the far field that is of paramount
importance. The properties of the modes have been fully established from relatively
simple expressions derived from first- and second-order asymptotics. These
expressions provide extensive information on the physical characteristics of the
modes, which, as it turns out, are quite different from the properties of modes in a
waveguide with plane, parallel boundaries. In particular, there is no mode cut-off and
there are no evanescent modes in the inverse-square profile.

A mode in the inverse-square profile shows an oscillatory region immediately
beneath the surface down to the extinction depth, below which it decays
exponentially to zero. Thus, although there are no evanescent modes in the duct,
there is an evanescent region in the depth profile of each mode. The extinction depth,
marking the onset of the evanescent region, increases exponentially with the mode
number, that is to say, the higher-order modes penetrate deeper into the water
column. A reciprocal relationship exists between the extinction depth and the
strength of a mode, indicating that the deeper modes contribute proportionately less
to the mode sum.

The extinction depth is also a function of frequency, decreasing (i.e. approaching
the surface) rapidly as the frequency rises. This behaviour is responsible for the
phenomenon of mode drop-out, whereby the extinction depth of the first mode,
followed by that of the second, third, fourth and so on, passes through a receiver at
fixed depth as the frequency increases. After drop-out, a mode soon ceases to
contribute to the field observed at the receiver.

Well above the extinction depth, the zeros show the same depth distribution in all
the modes. A consequence of this nodal distribution, which is logarithmic in depth,
is that multimode suppression can be achieved in the inverse-square profile. By
placing a receiver at a depth corresponding to the depth of the node, most of the
modes are either nullified or in extinction, leaving a package of three or four modes
as the sole constituents of the field. One effect of multimode suppression is that the
field along the channel is considerably smoother than it would be in the presence of
interference from all the modes.
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The inverse-square theory provides a reliable, robust means of investigating
acoustic propagation in a variety of conditions encountered in the ocean. This is
illustrated through an examination of inverse-square transmission in two very
different types of ocean-acoustic environment, the Arctic Ocean and the surface
bubble layer in the open ocean. Long-range acoustic propagation is supported in the
upward refractive conditions of the Arctic Ocean, as discussed in connection, firstly,
with recent observations of infrasonic ambient noise in the M1z off the east coast of
Greenland and, secondly, with an under-ice ocean-acoustic tomography experiment
in the Greenland Sea. On a depth scale that is smaller by several orders of magnitude,
our second environment, the ocean-surface bubble layer, acts as a surface duct for
frequencies in the audio-frequency range above about 2 kHz. In both the Arctic
Ocean and the surface bubble layer, the upward refracting nature of the medium has
a profound effect on the properties of the sound field at the receiver.

In the case of the bubble layer, the inverse-square theory reproduces in detail the
spectral features observed by Farmer & Vagle (1989) in the acoustic signatures of
wave-breaking events. Specifically, these features take the form of spectral peaks in
the La Perouse data and broader spectral bands in the FASINEX events. Our
conclusion is three-fold: firstly, the spectral features in both data-sets are
manifestations of wave-guide propagation, which arises from the upward-refracting
condition existing in the bubbly surface layer; secondly, the qualitative differences
between the two types of spectra may be attributed to differing channel depths,
FASINEX being 2.5 times deeper than La Perouse, hence supporting proportionately
more modes; and thirdly, near-surface measurements of bubble-layer spectra, in
combination with the inverse-square theory, have the potential for determining the
source depth provided the profile parameters are known, or conversely, for
determining the profile given the receiver and source depths.

It is a pleasure to acknowledge many interesting discussions on near-surface bubble layers with Dr
David Farmer and Professor Michael Longuet-Higgins. Julian Fletcher of the Royal Aerospace
Establishment, Farnborough, U.K., has efficiently organized the Arctic acoustic airborne-
measurement programme from its inception. The professional expertize and good humour of the
aircrews of the Experimental Flying Department, RAE, is especially appreciated. Partial support
for the research was received from the U.S. Office of Naval Research under contracts N00014-89-
K-0038 and N00014-80-C-0220.

Appendix A. Normal modes and the branch line integral

Equation (28) expresses the field as the sum of two integrals,

G =15 QV (2" ){I, +1,}, (A1)

where I, = fb P8, () H{V (pr) dp, (A 2)
0

1, = f pS,(n) HE (pr) dp, (A 3)

and

S,(n) = [HP () [HP (92 |[HP (n2) HP (925) — HP (92) HP (n25)],  for 2/ >2. (A 4)

Iz 1z
The radical
7=/ (ki —p® (A5)
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Figure 22. Branch cuts (hatched lines) for S,(5), beginning at +k,, (which is assumed to have a
infinitesimal imaginary component); and for the Hankel functions, along the negative real axis.
Contour (A-A) of integration for the integral I is deformed (B-B) to follow the upper branch cut
enclosing the poles of S,().

in these expressions has branch points at p = k%, implying that two branch cuts
must be made in the complex p-plane to avoid ambiguity in 8,(5). The cut lines are
chosen in such a way that Im () > 0 over the entire top Riemann sheet, to ensure
convergence of S, (7)) everywhere on the sheet. Figure 22 shows the appropriate choice
for these branch lines, and also the branch cut along the negative real axis associated
with the Hankel functions in (A 2) and (A 3).

Turning to the integral /,, the substitution

q=pem, (A 6)
leads to the formulation
0 exp jn
I, = e‘”"f 98,(ny) H (qre™7) dg, (A7)
0
where N =V (k3 —q"e™¥7) = v/ (k2 — ). (A8)
As HP (qre ™) = —HP(qr), (A9)
00 exp jn
it follows that I, = —J 98,(ng) H{"(qr) dg
0
0 exp jn
= —f pS,(n) H (pr) dp, (A 10)
0
and hence the integral [ is
I= f pS,(n) HEO (pr) dp, (A 11)
0 exp jn

where the path of integration is designated A-A in figure 22.

Since Im () > 0, it follows that S,(9) -0 when [p| - o0 everywhere on the top
sheet. Therefore, the contour A—-A in figure 22 may be deformed to follow the upper
branch cut, thus enclosing all the poles of S, (7) in the upper half-plane (contour B-B
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in figure 22). The contribution to the integral from the infinitesimal circle surrounding
the branch point at p =k, is zero and the net contribution from the outward and
return paths to the poles is also zero. From Cauchy’s theorem, the integral I is equal
to the integral along the section of path B-B with arrows plus the sum of the
residues, R,,, from the poles:

[ = fpSﬂ(vy)Hgl)(pr) dp+2nj ¥ R,,. (A 12)

m=1

By changing the integration variable from p to 3, and recognizing that 7 = + co at
the beginning of the path and 5 = —oco at the end of the path, this expression
becomes

1= [T s mapwas - nae S R, (A 13
—00 m=1
The residues can be written down immediately from (A 4):

N LD (1,0 2) HO (9, 2") HP (9, 25)
R, = “ I Vi s [ kgo 2
OH D (72)/01] o (VI

N=Nm
where 7, is the mth root of the equation
HP(yz5) = 0. (A 15)

Therefore, the field ¢ in (A 1) consists of a branch line integral, G,,, plus a sum of
normal modes, G, :

G =0,+0m, (A 16)
where Gy = ﬁfl—é—’f 1, 0) HP (v (2~ 7)) oy (A 17)
and
¥ _ _Qn\/(zz/) it ﬂmHLI)(Wm Z) H/Sl)(nm z/)H/(?)("?m zs) (1) 2 __ 02
CTnm - 8 m2=1 aHLl)(ﬁZs)/aﬂ |77=77m H() (\/(koo 77m) T). (A 18)

Equations (A 17) and (A 18) are exact expressions for the field whose properties are
discussed in the text.

Appendix B. Asymptotic analyses of H")(jo)

The normal modes in the inverse-square profile are specified by the Hankel
function HY,(jo), which has the following integral representation (Watson 1958):

—vr/2 [fo0

HY (jo) = ejn J exp {jyu— o cosh (u)} du. (B 1)
—00

On taking this integral, #, around the rectangular contour in figure 23, it follows

from Cauchy’s theorem, since there are no poles within the contour and the

contributions from the vertical segments are identically zero, that

—co+jm/2
F =J exp {jyu— o cosh (u)} du. (B 2)

o+jn/2
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Figure 23. Rectangular contour in the u-plane for integral ¥

By making a change of variable to v —3jn, we obtain

H®Y (jo) = _ej_n J exp j{vu— o sinh (u)} du. (B 3)

—ijv
—o0

For v > o this integral may be evaluated by the method of stationary phase.
The phase function and its first three derivatives with respect to u are

y = u—(0o/v)sinh (u), (B 4a)

y = 1—(o/v)cosh (u), (B 4b)

y” = —(o/v)sinh (u), (B 4c)

and y" = —(o/v) cosh (u). (B 4d)

The two turning points, u, and u,, obtained by equating the first derivative to zero,
are given by
cosh (u, ,) =v/0o, (B5a)
or explicitly, U, = =In[(v++/(¥*—0c?) /o] (B 5b)

From standard first-order statlonary phase theory, since there are no end point
contributions, it follows that

H(l)( o)~ _ge__vf\/in))lcos{vln[ﬁ—ﬂ:-z__fﬁ]_\/(;;?_gz)—%n}, (B 6)

o mo(y—o®

which is an oscillatory expression that is valid provided o is somewhat less than v.

When o takes values close to v, the turning points both approach zero and the
second derivatives y”(u, ,) in (B 4c) also go to zero. As these second derivatives
appear in the denominator of (B 6), first-order stationary phase fails under these
conditions and it is necessary to turn to second-order asymptotics.

Following Pekeris (1948), the phase function, y(u), is expanded in a Taylor series
about w = 0. At v = 0 the phase function itself and its second derivative, y”(u) are
identically zero and hence, to third order in w,

yu)~ (1—a/v)u—(o/6v)ud. (B17)

On substituting this expression into the integral in (B 3), and changing the range
of integration from 0 to oo, the expression for the Hankel function becomes

2e—VTC
(1) —
1 (o) ~ =

@, JOO cos {tou® — (v—o)updu
= 2je "™(2/0)F Ai[(2/0) (0 — )], (B 8)
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where Ai[ ] is an Airy function of the first kind. This second-order expression in
conjunction with the first-order result in (B 6) accurately represents the Hankel
function of the first kind of imaginary order and imaginary argument over the full
range of o.

Appendix C. Spectral periodicity in the mode sum

To understand the quasi-periodicity of the observed spectra from wave-breaking
events, it is necessary to examine the frequency dependence of the mode functions
in the inverse-square theory. Since we are interested here primarily in the oscillatory
part of the modes, the asymptotic solution in (36 a) provides the basis for discussion.

On neglecting the term in o, in all the radicals, the receiver mode function reduces
to

U(o,,0) ~—2+(2/nv)cos{v[In (2v/c,, {)—1]—n}. (C1)

From (44), /o, ~exp{mn/v+1—mn/4v}, (C2)
and hence the mode function is approximated by
Uo,,8) = —2+/(2/mv)sin{mn—vIn ({)}
= 24/(2/mv)(—1)"sin {vIn ({)}. (C3)

Naturally a similar expression, with {’ in place of {, holds for the source modes. As
(C 3) is independent of mode number (apart from the sign), it follows that, through
v, which essentially scales with frequency, all the modes show the same dependence
on the acoustic frequency (at least to the level of approximation given here). In other
words, in the frequency domain, each mode is oscillatory with spectral period and
phase that are independent of mode number. (The amplitude, of course, takes
significant non-zero values only below the drop-out frequency, which is a function of
mode number.)
When (C 3) is substituted into (47), the mode sum can be approximated as
G o OVE)

o R ——2—Vz—z2——sin (vIn)sin(vIng’)

> O’anff)(\/(kﬁozg—ka,zn)zi). (C 4)
1

m= S.

The mode functions now appear as a product outside the summation, representing a
modulated, periodic waveform : since {’ € { in La Perouse and FASINEX, we see that
the receiver-mode function (involving {) gives rise to a series of regularly spaced
spectral maxima (the interference peaks, prominent in the La Perouse spectra),
which are modulated by the slower source-mode function (involving ¢’). (The
modulation is the dominant effect in the FASINEX spectra.) The separation, Af,, of the
zeros in the receiver mode function (i.e. the bandwidth of a spectral peak) is obtained
by setting the argument of the sine function in (C 3) equal to «:

Afy & ¢y /122, In (/7)) (C5)

Similarly, the separation, Af;, of the zeros in the source mode function (i.e. the
spectral period of the modulation) is

Afy & e /122 In (2 /2)]. (€ 6)

If the parameters of the profile are known, then these two expressions permit the
source and receiver depths to be determined from a measurement of the spectrum.
Conversely, the profile parameters can be estimated if z and 2z are known.
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igure 11. Recently fractured ice floes and meltwater pools in the miz off the east coast of
reenland. The large central floe is about 30 m across. (Aerial photograph by the author.)
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